If it's not what You are looking for type in the equation solver your own equation and let us solve it.
148t+16t^2=0
a = 16; b = 148; c = 0;
Δ = b2-4ac
Δ = 1482-4·16·0
Δ = 21904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{21904}=148$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(148)-148}{2*16}=\frac{-296}{32} =-9+1/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(148)+148}{2*16}=\frac{0}{32} =0 $
| (2x-23)=93 | | 148t-16t^2=0 | | 2.5n=32 | | 3x-5x+7=11 | | -41+12x=15x+55 | | 8/9m=24 | | Y=17x-1 | | 60+80m=160+70m | | 10.1+u/7=-1.1 | | -173-x=165-14x | | F(x)=3x^2+4x+8 | | 21=d+7 | | -11x-99=186+8x | | -82+x=8x+114 | | 2x-9=14+90 | | x+10=2x-5=x-7 | | x+10=x-7=2x-5 | | 2(u-6)-7u=13 | | 2x-104=50+9x | | v/4+2=-10 | | 30*3x*7x=0 | | 2.5x-3=9.5 | | -137-4x=6x+173 | | 14=p+5 | | —137-4x=6x+173 | | 4y+4=y | | 4y+4=y=y+10 | | 36=2g+2g | | 5x-52=-x+44 | | x+11=2x-7=x-2 | | -34-9x=-7x+14 | | x11/2=x-1/2 |